Stability in flexible torus-like crystals effected by dislocations and twist
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We study the properties in flexible crystalline membranes of torus-like topology effected by dislo-
cations and twist. Using computational modeling, we obtain the trend of properties under different
twists and dislocations. We divide the crystal into three categories based on the location of disloca-
tion when stable. Our findings reveal a design space for controllable torus-like geometries.

INTRODUCTION

With the rise of research on materials such as carbon
nanotubes@], the special properties of two-dimensional
materials are receiving increasing attention. Two di-
mensional materials refer to materials in which elec-
trons can only move freely in two mesoscopic dimen-
sions. Membranes are two dimensional objects embedded
in three dimensional space. Flexible torus-like crystal is a
kind of two-dimensional crystal with closure constraint,
which brings new properties. The torus material such
as BaTiO3z was shown to have special electromagnetic
properties.[@] Andrei Zakharov studied shape multista-
bility in freestanding tubular crystals for two kinds of
achiral tubular crystals.[a] We apply their methods to
flexible torus-like crystals.

We consider the effects of twists and dislocations on the
model. We consider the effects of single dislocation pair,
which is the simplest defects which can be constructed in
finite steps from perfect crystal. Only gilde types in dislo-
cations is considerated here. We consider different twist
and phases as Fanlong Meng did in the paper study phase
diagram under of an inflated soft tube under twist[d]. We
show the shape transformation under different twist.

The molecular dynamics simulation[ﬂ] is performed
to minimize energy under NVT ensemble. All physical
quantities are measured in reduced units. The microscale
configurations are visualized using the Ovito software[(].
The Kokkos[ﬁ] library is used to support parallel com-
puting.

COMPUTATIONAL MODEL

For a tubular crystal, parastichies are the helical paths
around tube, only allowed to have a discrete set of pos-
sible angles with the tube axis. The number of distinct
parastichies defines a pair of integer parastichy numbers,
which index the possible crystalline tessellations of the
cylinder.[§] For a torus-like crystal, it is needed to use ad-
ditional parameters to describe the structure since there
are only a limited number of particles on the tube and
twist will take effect.

As shown in figure , its difficult to disdiguish layers
on chiral tubes since there isn’t any parastichy perpen-
dicular to the tube axis. In the achiral case shown in
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FIG. 1. (a) Chial (m = 20, n = 14) and (b) achiral (m =n =
17) tube structures. For the convenience of observation, the
particles on the back are obscured.

figure @, one layer consist of m(n) particles and num-
ber of layers [ can be used as an additional parameter.
We use another additional parameter ¢ called twist de-
gree, which means the number of particles shifted when
ends meet. For example, when rolled into a torus, the
particle A would coincide with particle C' naturally since
AC is parallel to the tube axis, while it is forced to coin-
cide with B or D. In the latter cases, the corresponding
twist degree is 1 and —1.

We model the crystal as a network of harmonic spring
bonds with a cuverature energy at each node propor-
tional to the sum of squared principal curvatures. The
coefficient of cuverature energy called bending rigidity .
The potential energy is

F=2 3 (=l +5 Y (4H? —2K)A, (1)

bonds nodes

where [y represents the original length of each bond, the
observed area A; around a node is one third of the total
area, H; is discrete mean curvature and K; is discrete
Gaussian curvature, which can be evaluated by

S (@~ w)(eotel + cotg)]
i Az s A — 4Az
2)



Let Iy = 1 and the Young’s modulus of a membrane
Y = 2¢/v/3 =1 in reduced unit system, then the elastic
coefficient can be reduced to € = \/§/ 2, and the reduced
bending rigidity is k* = k/el2. The reduced potential
energy U* = U/€l3 can be written as

* \/§ * 2 H* *2 * *
Ut = > -1 +5 > (AH? —2K7)A;. (3)

bonds nodes

The overdamped Langevin equation is used to describe
the evolutionary behavior of the system. Let damping
coefficient v = 1 in reduced system. Then the reduced
temperature is T = kpT/el3, and the reduced time is
t* = et/~. So the overdamped Langevin equation can be
written

oxX* ou* 27T+

o = ax V™ @
where 7 is a vector with uniform angular distribution and
uniform radial distribution in (0,1). The central limit
theorem ensures that this is equivalent to a Gaussian
distribution. The asterisk on physical quantities will be
omitted in the following text.
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FIG. 2. Dislocations (m =mn = 17)

As shown in figure E, dislocation pair is a pair of dis-
loaction with opposite Burgers vector, and can be con-
structed by glide and climb. The distance between two
dislocations can be represented by number of glide steps
g and climb steps ¢ as[j]

T = ?csine—i—gcosﬁ,y = —?ccos&—&—gsin@. (5)

In this paper, only glides perpendicular to axis is consid-
erated.

FIG. 3. Transitions of climbs. Remove atom (left) and add
atom (right).

Defects are obtained through transition of a perfect
crystal. Glides are obtained by T'1 transition, while
climbs are obtained by transitions shown in figure B

AFFECTED PARAMETERS

FIG. 4. Torus m =n = 13,1 =100,t =0

As shown in figure H, the outer radius of torus is R,
while the inner radius is 7. The outer radius stretching
factor is defined as R/Ry, where Ry = /31/4w. The
inner radius stretching factor is defined as r/rg, where
ro = m/2m.

Due to the competition between curvature energy and
elastic energy, the cross-section of the torus appears el-
liptical. Since the compression degree of the inner mesh
and the stretching degree of the outer mesh are directly
proportional to the distance between the inner and outer
mesh, the inner and outer layers tend to approach each
other. So the major axis of the cross-section ellipse is
perpendicular to the plane torus located. We calculated
the eccentricity by

— (6)

where a, b are the distance between the farthest / nearest
particles and the average center respectively.

Twist angle is ® = 2¢tw/m, the torque T then can be
defined as

| — torus
—— tube
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FIG. 5. Energy under different glide. ¢ is glide, E — Ey
is energy increment from perfect crystal. m = n = 13,1 =
100,t =0,k =0.1
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T = 9% (7)
The twist parameter is ¢ = &r/27R [@]

As shown in figure i, the shape of torus can slow down
the change of energy while glide changes. That’s may
because defects can cause bending, which can adapt to
the bending of torus itself.
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FIG. 6. Stretching degree of inner and outer radius and ec-
centricity. m =n = 13,1 =100,t =0,x = 0.1

As shown in figure E, the shape of torus can in-
crease inner raduis (r/rp > 1) and decrease outer raduis
(R/Rop < 1). Gilde would change the stretching degree
to a very small extent and increase eccentricity.
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FIG. 7. Eccentricity under different reduced bending rigidity.
m=mn=13,1=100,g =0

As shown in figure ﬂ, eccentricity is mostly decided by
reduced bending rigidity, and less affected by ¢ and g.
The higher reduced bending rigidity, the lower eccentric-
ity.

As shown in figure E, the torque increases as twists in-
creases, which means the torus will become harder and
harder. Stretching degree of inner radius decreases as
twists increases, while stretching degree of outer radius
increases as twists increases. This means that twist de-
gree can offset the effect of inner and outer radius changes
caused by the shape of torus.
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FIG. 8. Torque and Stretching degree of inner and outer
radius under different twists. m = n = 13,1 = 100,k =
0.1,9=0
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FIG. 9. Eccentricity under different twists. m = n = 13,1 =
100,k = 0.1

As shown in figure E, the eccentricity decreases as ¢
increases. However, this is not completely monotonous,
since there are points increased in local intervals. We
found these points are near the phase transition point,
and may be caused by phase transition.

PHASE DIAGRAM

FIG. 10.

Two phases.
(down) Phase of inner dislocations.

(up) Phase of outer dislocations.



As mentioned earlier, twist can cause parameter
changes and lead to phase transitions. Since the vari-
ation of parameters is continuous, it is a second-order
phase transition. In the structure of torus, this phase
transition is shown as defect position flipping.

As shown in figure [L0, when the ¢ is small, the disloca-
tions is at outer surface, with ¢ increases, the dislocations
move to inner surface suddenly at a certain point. This is
first phase transition and is a second-order phase transi-
tion. At a higher ¢, the torus won’t exsit stable and will
collapse into a line or other structure such as in figure

, which don’t have any continuous parameters and is
a first-order phase transition.

FIG. 11. One kind of collapsed structure. m = m = 13,1 =
100, = 2,t = 25,k = 0.1

As shown in figure @, the phase can be divided into
three.
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FIG. 12. Phase of torus. m =m = 13,1 =100,k = 0.1

DISCUSSION

Our findings can be used to study micro torus-like bio-
material. Futher study could focus on the origin of the

different phases.

The universally applicable method of torus discription
haven’t be found yet. Additional parameters need to
be proposed to study any kinds of torus including chial
torus, which may bring new propeties.
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